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Abstract
Simple and accurate analytical approximations of integrals relating to overhead
transmission lines are presented in this paper. These approximations are valid
for all arguments of the integrals and are faster in comparison with numerical
integration.

PACS numbers: 02.30.-f, 02.60.-x, 84.40.Az

1. Introduction

In electromagnetic compatibility, transmission lines and cables are very important in assessing
the interaction of an external stimulus (lightning, EMP, etc) to electrical systems. Transient
electromagnetic energy is conducted through cables and may damage components in small-
signal circuits. In determining how this energy distributes itself within systems, it is usually
necessary to utilize the transmission line model. The basic assumptions in this model are that
the response of the line is quasi-TEM and that the transverse dimensions of the line are small
compared to the free space wavelength (thin wires). Under these assumptions, a system of
horizontal wires parallel to the Earth’s surface may be treated as a transmission line [1]. To
allow for the possibility of determining the behaviour of complicated similar systems to external
excitations, the transmission line characteristics have to be determined with less computational
cost.

Using the quasi-TEM approach, it has been shown [2, 3] that the transmission line
parameters, the series impedance and the shunt admittance per unit length, are expressible
as a function of two integrals representing the conduction and the displacement current losses
in the Earth. These integrals are approximations of the Sommerfeld integrals [4] under the
quasi-TEM hypothesis. This paper gives a simple and precise analytic approximation of the
two integrals in terms of logarithms and exponential integral functions. The comparison with
the numerical integration shows that the analytical approximations are accurate for all typical
arguments and are more rapid to evaluate.
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Figure 1. Transmission line geometry.

2. Transmission line parameters

The configuration of the transmission line is depicted in figure 1. A system of parallel thin
wires is located in the air (y > 0), above a conducting earth (y < 0)with electrical parameters
εg , µo and σg . The nth wire has a radius an, and is located at a height y = yn, and a position
x = xn. The half-space (y > 0) is characterized by εo and µo. Note that for typical overhead
communication cables and power lines, conductors are 5 m or more above ground while their
radii may range from a few millimetres to a few centimetres.

According to Bridges et al [2], for such a structure, the unknown propagation constant kz
is a solution of the modal equation

det([Zser] − [(ikz)
2] [Ysh]−1) = 0 (1)

where

[Ysh]−1
mn = − 1

2iπωε0

1

τanK1(τan)
× [

K0(τρmn)− K0(τρ
∗
mn) + G(τ, ρ∗

mn)
]

(2)

[Zser]mn = [Zw]mn − iωµ0

2π

1

τanK1(τan)
× [

K0(τρmn)− K0(τρ
∗
mn) + J(τ, ρ∗

mn)
]

(3)

J(τ, ρ∗
mn) =

∫ +∞

−∞

exp(−uo(yn + ym)− iλ |xn − xm|)
uo + ug

dλ (4)

G(τ, ρ∗
mn) =

∫ +∞

−∞

exp(−uo(yn + ym)− iλ |xn − xm|)
n2uo + ug

dλ (5)

uo =
√
τ 2 + λ2 ug =

√
τ 2
g + λ2

τ =
√
k2
z − k2

o τg =
√
k2
z − k2

g

and

ρmn =
√
(xn − xm)2 + (yn − ym)2

ρ∗
mn =

√
(xn − xm)2 + (yn + ym)2.

The integration contour in (4) and (5) is the real axis of λ running from −∞ to +∞. In addition,
to be definite, we choose the square root such that Re (uo) � 0 for all real values of λ. When
we deal with the region y < 0, the factor exp(+ugy) appears in the solution. Again, for the sake
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of consistency we choose Re (ug) � 0. The real parts of the transverse propagation constants
τ and τg , in the air and in the ground, respectively, have been chosen to retain a positive value
on the correct Riemann sheet Re (τ, τg) � 0.

The ground is assumed to be homogeneous and a complex refractive index n is defined
for it as

n =
√
εg/εo + i

σg

ωεo

with Im (n) � 0, appropriate to an exp(−iωt) time dependence. ko = ω
√
µoεo is the

propagation constant in air and kg = √
ω2µoεg + iωµoσg is the propagation constant in the

ground. ω is the angular frequency.
[Zw] is expressed in terms of modified Bessel functions and represents the internal

impedance matrix [2]. [Zser]mn are the series impedance matrix elements, and [Ysh]mn are
the shunt admittance matrix elements of the transmission line. G and J are the Sommerfeld-
type Fourier integrals [2, 4]. K0(z) and K1(z) are modified Bessel functions of the second
kind.

3. Approximations of integrals

In the framework of the quasi-TEM approximation, the propagation constant kz deviates little
from the free-space value (τ � 0) [3]. Then the integrals (4) and (5) become

J(X, Y ) =
∫ +∞

−∞

exp(− |λ|Y − iλX)

|λ| +
√
λ2 − k2

o(n
2 − 1)

dλ (6)

G(X, Y ) =
∫ +∞

−∞

exp(− |λ|Y − iλX)

n2 |λ| +
√
λ2 − k2

o(n
2 − 1)

dλ (7)

with Y > 0 and X > 0.
To find approximate analytic expressions of (6) and (7), we use the following

approximation:

uo − ug

uo + ug
� − exp(−uoYJ )

YJ = 2

ko
√

1 − n2

(8)

which is valid in the neighbourhood of λ = 0 as shown in the appendix. For small values
of τ , the integrands in (6) and (7) decrease as exp(− |λ|Y ) away from the point λ = 0. The
major contribution to the integrals is then from the vicinity of λ = 0. Accurate analytical
approximations of the previous integrals can, therefore, be obtained using (8). Note that the
transverse propagation constant τ in the medium (y > 0) does not necessarily approach zero if
the conditions of the quasi-TEM approximation are not satisfied. In this case the relationship
is worst, and one cannot insert it directly in integrals (4) and (5) for arbitrary values of τ .

Based upon (8) and the following relationship:

1

2uo

uo − ug

uo + ug
+

1

2uo
= 1

uo + ug
(9)

we may rewrite (6) as

J(X, Y ) � lim
τ→0

( ∫ +∞

−∞

exp(−uoY − iλX) dλ

2uo
−

∫ +∞

−∞

exp(−uo(Y + YJ )− iλX) dλ

2uo

)
. (10)
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The evaluation of the previous limit is accomplished by noting that∫ +∞

−∞

exp(−uoY − iλX)

2uo
dλ = Ko

(
τ
√
X2 + Y 2

)
(11)

and Ko(z) ∼ − ln(z) for z → 0 [5]. Combining the results (10) and (11), we obtain the
following analytical approximation of (6) which is very convenient for evaluation:

J(X, Y ) � ln

(
ρ∗
J

ρ∗

)
(12)

where

ρ∗
J =

√
X2 + (Y + YJ )2

ρ∗ =
√
X2 + Y 2.

We now deal with the integral (7). It is of interest to note that the same procedure leading
to (12) can also be used to approximate (7).

After some algebraic manipulations, the remaining integral (7) is easily shown to be

G(X, Y ) = 2n2

n4 − 1

∫ +∞

0

exp(−koYα) cos(koXα)

α − b
dα

− 2

n4 − 1

∫ +∞

0

exp(−koYα) cos(koXα)

α2 − b2

(√
α2 + 1 − n2 + n2b

)
dα

= Go(X, Y ) + G1(X, Y ) (13)

where

Go(X, Y ) = 2n2

n4 − 1

∫ +∞

0

exp(−koYα) cos(koXα)

α − b
dα (14)

G1(X, Y ) = − 2

n4 − 1

∫ +∞

0

exp(−koYα) cos(koXα)

α2 − b2

(√
α2 + 1 − n2 + n2b

)
dα (15)

and

b = i/
√

1 + n2.

The integration corresponding to (14) may be accomplished in closed form. By using the
definition for the exponential integral, we show in the appendix that (14) is simply given by

Go(X, Y ) = n2

n4 − 1
(Q(bz) + Q(bz)) (16)

where Q(z) = exp(−z)E1(−z). The exponential integral is defined by E1(z) =∫ ∞
z

exp(−t)/t dt [5, p 228]. z = ko(Y + iX), and z is the complex conjugate of z.
Now, we consider the integral (15). By expressing the cosine function in terms of

exponential functions we have

G1(X, Y ) = − 1

n4 − 1
(G2(z) + G2(z)) (17)

where

G2(z) = n2
∫ ∞

0

b exp(−αz)
α2 − b2

dα +
∫ ∞

0

√
α2 + 1 − n2 exp(−αz)

α2 − b2
dα. (18)

The first integral in (18) is elementary and can be expressed as

n2
∫ ∞

0

b exp(−αz)
α2 − b2

dα = n2

2
(Q(bz)− Q(−bz)) (19)
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while the determination of the second rests upon the evaluation of the integral

P (b, z) =
∫ ∞

0

√
α2 + 1 − n2

α − b
exp(−αz) dα. (20)

It is pointed out that the results in (16) and (19) are valid for Re (z) > 0. This condition, which
is necessary to ensure convergence of the integrals, is satisfied because Re (z) = koY > 0.

Substitution of α = t
√

1 − n2 into the integral (20) yields

P (b, z) =
√

1 − n2

∫ ∞

0
eiθ

√
1 + t2

t − b/
√

1 − n2
exp

(
−tz

√
1 − n2

)
dt (21)

where θ = −arg
√

1 − n2. Since Re (
√

1 − n2) > 0 and Im (
√

1 − n2) < 0 for all electrical
parameters of the structure under consideration, we have 0 < θ < π/2. The integration path
arg t = θ in (21) may be rotated back to the positive real axis if −π/2 + θ < arg z < π/2. The
resulting integral

P (b, z) =
√

1 − n2

∫ ∞

0

√
1 + t2

t − b/
√

1 − n2
exp

(
−tz

√
1 − n2

)
dt (22)

is convergent for Re (z
√

1 − n2) > 0, that is, for−π/2+θ < arg z < π/2+θ . Then, by analytic
continuation, the integral representation (22) for P (b, z) is valid for Re (z

√
1 − n2) > 0.

Since the contribution to the integral (22) comes mainly from small t , it is more convenient
to approximate

√
1 + t2 around t = 0. An expression for this is found in the appendix. The

result is repeated here as
√

1 + t2 � 1

2t
+ t − exp(−2t)

2t
. (23)

Next, insert the approximation (23) for
√

1 + t2 into (22) and rewrite the integral as

P (b, z) � −1 − n2

2b

∫ ∞

0

1 − e−2t

t
exp

(
−tz

√
1 − n2

)
dt

+
1 − n2

2b

∫ ∞

0

1 − e−2t

t − b/
√

1 − n2
exp

(
−tz

√
1 − n2

)
dt

+
√

1 − n2

∫ ∞

0
exp

(
−tz

√
1 − n2

)
dt + b

∫ ∞

0

exp
(
−tz√1 − n2

)

t − b/
√

1 − n2
dt. (24)

By a standard evaluation of the four integrals it is found that

P (b, z) � −1 − n2

2b

(
ln

(
1 +

2

z
√

1 − n2

)
+ Q

(
bz +

2b√
1 − n2

))

+
1

z
+ bQ(bz)

(
1 +

1 − n2

2b2

)
. (25)

Finally, by combining (16)–(20), after some analytical manipulations we obtain

G(X, Y ) � n2

2(n4 − 1)
(Q(bz) + Q(bz))− 1

2b(n4 − 1)
(P (b, z) + P (b, z)− P (−b, z)

−P (−b, z)− n2b(Q(−bz) + Q(−bz))) (26)

where P(b, z) is given by (25). It should be noticed that the approximation (25) is valid
for Re (z

√
1 − n2) > 0. In addition, when using the approximation for P in (26), it is

required that Re (z
√

1 − n2) > 0 and Re (z
√

1 − n2) > 0. This is equivalent to the conditions
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YRe (
√

1 − n2)∓XIm (
√

1 − n2) > 0. The first condition, corresponding to the upper sign,
is always satisfied because X > 0, Y > 0, Re (

√
1 − n2) > 0 and Im (

√
1 − n2) < 0.

For most practical problems involving power lines and aerial communication cables, one
may readily verify, within the framework of the quasi-TEM approximation, that the second
condition is also satisfied. Indeed, in the case when the structure involves overhead lines, we
haveY > X. Moreover, the use of the quasi-TEM approximation leads to |n| � 1; this implies
that Re (

√
1 − n2) � −Im (

√
1 − n2). These two united conditions justify the validity of (26)

for Y > X.
It can be seen that the result in (26) is expressed only in terms of logarithms and exponential

integrals. The evaluation of (26) and (12) is, therefore, fast and may be achieved without
numerical integration, if one uses a standard routine for evaluating E1(z) available in, for
example, Mathematica. The numerical confirmation of the accuracy of these approximations
by direct comparison with numerical values will be discussed in the next section.

4. Numerical results

In this section, we compare the values based on the analytical approximations with those
obtained from numerical integration. We point out that the latter is accomplished by dividing
the semi-infinite interval running from 0 to ∞ on the real axis into a number of equal
subintervals and applying a Romberg integration algorithm to each. The numerical integration
process stops when the contribution of the subinterval is too insignificant to be worth a special
computation. The integrals are truncated at an upper limit λN . To speed up the convergence
of the summation over the subintervals, Richardson extrapolation with respect to λN has been
used.

As one can see, the previous integrals depend on X, Y , ω, εg and σg . X represents the
horizontal distance between conductors, while Y designates the height above the ground. For
practical interference problems involving above-ground cables, the largest value of Y is about
40 m. The smallest is 0.1 m or more. The ground conductivity σg varies from 0.1 m� m−1

to 0.1 � m−1. The range of values of the relative dielectric constant εrg = εg/εo is from 5
to about 30. Generally, we have X < Y . Note that, when the ground is perfectly conducting
(σg → ∞), the integrals (6) and (7) vanish.

Now, consider figures 2 and 3, which show the integrals J and G computed from (12)
and (26) versus those obtained from the numerical integration of (6) and (7). The configuration
used for these cases (figures 2 and 3) is formed by a single conductor located at a height of 10 m
above the ground. The electrical parameters of the ground are σg = 0.01 � m−1, εrg = 15
for figure 2 and σg = 0.01 � m−1, εrg = 8 for figure 3. This configuration corresponds to a
typical power line. In figure 2, the real part and the imaginary part of the integral G have been
drawn as functions of the frequency f = ω/2π . The dashed curve indicates the real part of
G, while the imaginary part is represented by the solid curve. Numerical and analytical curves
are superimposed. Figure 3 shows that the numerical and analytical values of J are in good
agreement.

To establish the accuracy of (12) and (26), calculations were performed using different
parameters and the results are shown in table 1. It is seen from this table that the analytical values
are accurate. Moreover, the computation times of the analytical approximations are quasi-
independent of the parameters and are much smaller than the times consumed in numerical
integration. It is important to note that this difference arises because the effective length of the
integration interval λN changes as a function of the parameters. For example, λN increases as
the frequency f decreases. As a result, the number of interval subdivisions increases.

For the parameters summarized in table 1, one can see that for calculating J using the
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Figure 3. (a) Comparison of analytical and numerical values of Re (J). (b) Comparison of
analytical and numerical values of Im (J).

numerical integration, the computation times are increased by a factor of 4.5–13.6, while G is
computed up to 38 times faster with our method.
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Table 1. Comparison of analytical and numerical values of integrals J and G. CPU times are for
a 486/100 MHz processor.

f (Hz) X (m) Y (m) εrg σg J (anal) J (num) G (anal) G (num)

103 0 10 15 10−2 3.145 3.077 2.529E−5 2.529E−5
+0.754i +0.747i −1.5E−4i −1.5E−4i

CPU (s) → 0.15 1.68 0.37 14.30

10 4 5 10 10 10−2 1.950 1.900 2.534E−4 2.534E−4
+0.693i +0.676i −1.117E−3i −1.117E−3i

CPU (s) → 0.15 1.57 0.37 12.22

104 7 10 10 10−3 2.945 2.878 2.578E−3 2.578E−3
+0.758i +0.748i −9.831E−3i −9.831E−3i

CPU (s) → 0.15 1.74 0.37 8.06

106 8 20 5 10−2 0.212 0.212 2.447E−2 2.447E−2
+0.183i +0.182i −2.955E−2i −2.956E−2i

CPU (s) → 0.15 0.66 0.37 8.06

104 0 0.2 10 10−3 7.026 6.950 2.605E−3 2.6049E−3
+0.7871i +0.7869i −1.424E−2i −1.424E−2i

CPU (s) → 0.14 1.9 0.36 14

106 0 0.1 10 10−2 4.187 4.274 2.976E−2 2.975E−2
+0.7961i +0.799i −8.66E−2i −8.65E−2i

CPU (s) → 0.16 1.75 0.54 10.53

5. Conclusion

In this paper, simple and accurate analytical approximations for integrals arising from the
transmission line theory, under the quasi-TEM hypothesis, were derived. These formulae are
valid for all their arguments and provide very accurate results using only elementary functions,
and thus are very convenient when quick calculations are needed.

Appendix

Consider the relationship (8). The term on the left can be expanded into a Taylor series in uo
as

uo − ug

uo + ug
=

uo −
√
u2
o + τ 2

g − τ 2

uo +
√
u2
o + τ 2

g − τ 2

=
uo −

√
u2
o + k2

o − k2
g

uo +
√
u2
o + k2

o − k2
g

= uo − √
u2
o + k2

o(1 − n2)

uo +
√
u2
o + k2

o(1 − n2)

=
uo −

√
u2
o + 4/Y 2

J

uo +
√
u2
o + 4/Y 2

J

= −1 + YJuo − 1
2Y

2
J u

2
o + 1

8Y
3
J u

3
o + O(u4

o)

since the contribution to integrals (4) and (5) is from the vicinity of λ = 0.
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Neglecting the cubic term, we can easily show that

− exp(−YJuo) � −1 + YJuo − 1

2
Y 2
J u

2
o � uo − ug

uo + ug
.

Similarly, it is clear that in the vicinity of t = 0, we have

t −
√

1 + t2

t +
√

1 + t2
� − exp(−2t)

which is equivalent to

2t2 + 1 − 2t
√

1 + t2 � exp(−2t).

By extracting the square-root term, we find that
√

1 + t2 � t +
1

2t
− exp(−2t)

2t
.

Now, consider the integral (14). By expressing the cosine function in terms of exponential
functions, we get

n2

n4 − 1

∫ ∞

0

(
exp(−ko(Y + iX)α)

α − b
+

exp(−ko(Y − iX)α)

α − b

)
dα

= n2

n4 − 1

∫ ∞

0

(
exp(−zα)
α − b

+
exp(−zα)
α − b

)
dα

with Re (z) > 0. For the first term in the integrand, let t = (α − b)z and for the second term,
let t = (α − b)z, then

Go = n2

n4 − 1

(
exp(−bz)

∫ ∞

−bz

exp(−t)
t

dt + exp(−bz)
∫ ∞

−bz

exp(−t)
t

dt

)
.

Hence, from [5],

Go = n2

n4 − 1
(exp(−bz)E1(−bz) + exp(−bz)E1(−bz)) = n2

n4 − 1
(Q(bz) + Q(bz)) .
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